Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.055
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 511, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622444

RESUMEN

BACKGROUND: Lipases play a crucial role in various industrial applications, and microbial lipases, particularly those from bacteria, possess significant properties. With increasing concerns about the environmental and health impacts of hydrocarbons from pipelines and refineries, there is a growing need to mitigate the risks associated with these compounds. METHODS: In this study, 40 bacterial isolates were recovered from contaminated soil samples collected from multiple refineries across Iraq. Using the Vitek system, bacterial isolates were identified up to the species level, revealing that only 12 isolates exhibited lipase-producing capabilities. RESULTS: Among the lipase-producing isolates, Ralstonia mannitolilytica demonstrated the highest extracellular lipase activity, as determined by an olive oil plate assay supplemented with rhodamine B. Confirmation of the species identity was achieved through 16S rRNA gene sequencing, with the obtained sequence deposited under accession number LC772176.1. Further sequence analysis revealed single nucleotide polymorphisms (SNPs) in the genome of Ralstonia mannitolilytica strain H230303-10_N19_7x_R2 (CP011257.1, positions 1,311,102 and 1,311,457). Additionally, the presence of the lipase gene was confirmed through amplification and sequencing using a thermocycler PCR. Sequence analysis of the gene, aligned using Geneious Prime software, identified SNPs (CP010799, CP049132, AY364601, CP011257, and CP023537), and a phylogenetic tree was constructed based on genetic characterization. CONCLUSION: Our findings highlight the potential of Ralstonia mannitolilytica as a promising candidate for lipase production and contribute to our understanding of its genetic diversity and biotechnological applications in hydrocarbon degradation and industrial processes.


Asunto(s)
Petróleo , Ralstonia , Petróleo/microbiología , ARN Ribosómico 16S/genética , Filogenia , Irak , Lipasa/genética , Suelo
2.
Bioorg Chem ; 146: 107290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507999

RESUMEN

Phenylpropanoids (PPs), a group of natural compounds characterized by one or more C6-C3 units, have exhibited considerable potential in addressing metabolic disease. However, the comprehensive investigation on the relationship of compound structures and involved activity, along with the action mechanisms on the drug target is absent. This study aimed to evaluate the antioxidant and inhibitory activities of 16 PPs against two digestive enzymes, including α-glucosidase and pancreatic lipase, explore the structure-activity relationships and elucidate the mechanisms underlying enzyme inhibition. The findings revealed the similarities in the rules governing antioxidant and enzyme inhibitory activities of PPs. Specifically, the introduction of hydroxyl groups generally exerted positive effects on the activities, while the further methoxylation and glycosylation were observed to be unfavorable. Among the studied PPs, esculetin exhibited the most potent antioxidant activity and dual enzymes inhibition potential, displaying IC50 values of 0.017 and 0.0428 mM for DPPH and ABTS radicals scavenging, as well as 1.36 and 6.67 mM for α-glucosidase and lipase inhibition, respectively. Quantification analysis indicated esculetin bound on both α-glucosidase and lipase successfully by a mixed-type mode. Further analyses by UV-Vis, FT-IR, fluorescence spectra, surface hydrophobicity, SEM, and molecular docking elucidated that esculetin could bind on the catalytic or non-catalytic sites of enzymes to form complex, impacting the normal spatial conformation for hydrolyzing the substrate, thus exhibiting the weakened activity. These results may shed light on the utilization value of natural PPs for the management of hyperglycemia and hyperlipemia, and afford the theoretical basis for designing drugs with stronger inhibition against the dual digestive enzymes based on esculetin.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Lipasa/metabolismo , Relación Estructura-Actividad
3.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 81-87, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430037

RESUMEN

This study aimed to investigate the role of coriander seed powder (Coriandrum sativum) on growth indices, feed utilization, body composition, and haemato-biochemical parameters in common carp (Cyprinus carpio) fingerlings over 84 days. One hundred and forty-four common carp (25.24±0.05 g) were assigned into four groups fed with different diets, namely 0 (basal diet), 1%, 2%, and 4% of coriander seed powder (CSP). In the current study, C. carpio fed with dietary CSP revealed significant improvement in weight gain, final weight, specific growth rate, total feed intake, feed conversion efficiency, feed conversion ratio, protein intake, and protein efficiency ratio, in comparison to control fish fed after 84 days (P>0.05). It was also found that fish fed with 1%CSP-supplemented dietary had the best growth performance and feed utilization. The crude protein of fish fed with CSP dietary treatments increased, and significant differences were only found in the fish fed with 1%CSP diet, in comparison to the control group. The CSP supplementation groups showed significant increases in hemoglobin, hematocrit, albumin, total protein, and globulin compared to the control group. Nevertheless, differential white blood cells, mean corpuscular hemoglobin concentration, cholesterols, and triglycerides were significantly reduced in the CSP dietary group in comparison to the control group. It was also found that CSP dietary treatment significantly increased lipase and amylase in comparison to the control group (P>0.05). However, the highest lipase and amylase levels were obtained at 1%CSP and 2%CSP dietary treatment groups, compared to the control basal diet. Based on the results, CSP supplementation could improve the overall health status and growth performance of common carp fingerlings.


Asunto(s)
Carpas , Coriandrum , Hematología , Animales , Polvos , Suplementos Dietéticos , Composición Corporal , Amilasas , Lipasa
4.
PLoS Genet ; 20(3): e1011003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547054

RESUMEN

The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.


Asunto(s)
Té de Kombucha , Animales , Humanos , Caenorhabditis elegans/genética , Lipasa , Redes y Vías Metabólicas , Lípidos , Fermentación
5.
Int J Biol Macromol ; 264(Pt 2): 130730, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462111

RESUMEN

Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.


Asunto(s)
Lipasa , Nanopartículas de Magnetita , Lipasa/química , Enzimas Inmovilizadas/química , Aceites de Plantas/química , Esterificación , Estabilidad de Enzimas
6.
Food Chem ; 444: 138514, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38310782

RESUMEN

The suppression of pancreatic lipase has been employed to mitigate obesity. This study explored the mechanism of coffee leaf extracts to inhibit pancreatic lipase. The ethyl acetate fraction derived from coffee leaves (EAC) exhibited the highest inhibitory capacity with a half-maximal inhibitory concentration (IC50) of 0.469 mg/mL and an inhibitor constant (Ki) of 0.185 mg/mL. This fraction was enriched with 3,5-dicaffeoylquinic acid (3,5-diCQA, 146.50 mg/g), epicatechin (87.51 mg/g), and isoquercetin (48.29 mg/g). EAC inhibited lipase in a reversible and competitive manner, and quenched its intrinsic fluorescence through a static mechanism. Molecular docking revealed that bioactive compounds in EAC bind to key amino acid residues (HIS-263, PHE-77, and SER-152) located within the active cavity of lipase. Catechin derivatives play a key role in the lipase inhibitory activity within EAC. Overall, our findings highlight the promising potential of coffee leaf extract as a functional ingredient for alleviating obesity through inhibition of lipase.


Asunto(s)
Catequina , Coffea , Polifenoles/farmacología , Polifenoles/química , Coffea/metabolismo , Simulación del Acoplamiento Molecular , Lipasa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Obesidad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
7.
Mol Biol Rep ; 51(1): 323, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393680

RESUMEN

BACKGROUND: Recently, lipase processing for biodiesel production has shown a global increase as it is considered a potential alternative clean-fuel source. The current study's objective is to investigate of lipolytic activity of lipase produced from different strains of Pseudomonas aeruginosa (P. aeruginosa) in biodiesel production using edible plant oils. The goal is to develop an efficient and cost-effective method for producing inexpensive and environmentally friendly biodiesel. METHODS AND RESULTS: Four P. aeruginosa isolates were obtained from different environmental sources (soil), phenotypically identified, and it was confirmed by the PCR detection of the 16SrRNA gene. The isolated P. aeruginosa strains were screened for lipase production, and the recovered lipase was purified. Besides, the lipase (lip) gene was detected by PCR, and the purified PCR products were sequenced and analyzed. The production of biofuel was conducted using gas chromatography among tested oils. It was found that castor oil was the best one that enhances lipase production in-vitro.


Asunto(s)
Biocombustibles , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa/metabolismo , Lipasa/metabolismo , Aceites , Secuencia de Bases , Aceites de Plantas/química
8.
Enzyme Microb Technol ; 175: 110409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335559

RESUMEN

The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).


Asunto(s)
Aceite de Ricino , Ácidos Grasos no Esterificados , Hexanoles , Esterificación , Ésteres/química , Ácidos Grasos/química , Lipasa/metabolismo , Etanol , Catálisis , Enzimas Inmovilizadas/química
9.
Food Chem ; 446: 138832, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412808

RESUMEN

In this study, an efficient approach to preparation of different anthocyanins from Purple-heart Radish was developed by combining microwave-assisted extraction (MAE), macroporous resin purification (MRP) and ultrasound-assisted acid hydrolysis (UAAH) for evaluation of physicochemical stability and pancreatic lipase (PL) inhibitory activity. By optimization of MAE, MRP and UAAH processes, the anthocyanins reached the yield of 6.081 ± 0.106 mg/g, the purity of 78.54 ± 0.62 % (w/w) and the content of 76.29 ± 1.31 % (w/w), respectively. With high-resolution UHPLC-Q-Orbitrap/MS, 15 anthocyanins were identified as pelargonins with diverse glucosides and confirmed by pelargonidin standard. By glycosylation, pelargonins exhibited higher stability in different pH, temperature, light, metal ions environments than that of pelargonidin. However, PL inhibitory assay, kinetic analysis and molecular docking demonstrated that pelargonidin had higher PL inhibitory activity than pelargonins even though with similar binding sites and a dose-effect relationship. The above results revealed that the effect of glycosylation and deglycosylation on PL inhibitory activity and physicochemical stability.


Asunto(s)
Antocianinas , Raphanus , Antocianinas/análisis , Raphanus/química , Cinética , Simulación del Acoplamiento Molecular , Lipasa , Extractos Vegetales/química
10.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398569

RESUMEN

In this study, Asparagus stipularis was characterized concerning its phytochemical composition, antioxidant potential, cytotoxicity, and pancreatic lipase inhibitory activities. Twenty-seven compounds were identified and quantified by HPLC-DAD-MS in the leaf, stem, pericarp, and rhizome of ethanolic extracts. Seven steroidal saponins were detected, and the highest content was quantified in rhizome and pericap. A. stipularis also contained significant amounts of flavonoids in the aerial part. Isorhamnetin tetra-glycoside, quercetin-3-glucosyl-rutinoside, and rutin were the main flavonoid derivatives in leaf, stem, and pericarp extracts, respectively. In addition, eleven phenolic acids were also detected; among them, caffeic acid, protocatechuic acid, p-hydroxybenzoic acid, and ferulic acid were the predominant phenolics, with these having the highest amounts quantified in the rhizome extracts. All the tested extracts possessed antioxidant capacities, with pericarp and rhizome extracts exhibiting the highest activity in DPPH, ABTS, and FRAP assays. The extracts from pericarp and rhizome were revealed to also be the strongest inhibitors of pancreatic lipase. The rhizome extracts exhibited potent cytotoxic activity against HCT-116 and HepG2 with IC50 values of 30 and 54 µg/mL after 48 h of treatment. The present study demonstrated that A. stipularis can be used as a new source of natural antioxidants and potential anticancer and antiobesity compounds.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/química , Rutina , Fitoquímicos/farmacología , Lipasa
11.
BMC Complement Med Ther ; 24(1): 27, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195607

RESUMEN

BACKGROUND: Plants have historically been a rich source of medicinal compounds, with many modern pharmaceuticals derived from botanical origins. In contemporary healthcare, there is a resurgence in utilizing botanical substances as recognized medicinal agents. This study delved into understanding the phytochemical makeup and the multifaceted biological activities of an aqueous extract from Cymbopogon citratus (C. citratus). The investigated activities were its effect on AMPA receptors, antioxidant capacity, anti-lipase, anti-α-amylase actions, cytotoxicity, and antimicrobial properties. METHODS: The extract of C. citratus received a comprehensive investigation, which included the study of its phytochemical composition, assessment of its antioxidant and anti-lipase properties, evaluation of its capacity to inhibit α-amylase, analysis of its impact on cell viability, and assessment of its antimicrobial activity. The approaches are used to clarify the complex physiological and biochemical characteristics. RESULTS: The results were compelling; receptor kinetics had a marked impact, notably on the GluA2 subunit. Regarding its medicinal potential, the extract demonstrated potent antioxidant and anti-diabetic activities with IC50 values of 15.13 and 101.14 µg/mL, respectively. Additionally, it displayed significant inhibitory effects on the lipase enzyme and showed cytotoxicity against the Hep3B cancer cell line, with IC50 values of 144.35 and 148.37 µg/mL. In contrast, its effects on the normal LX-2 cell line were minimal, indicating selectivity. CONCLUSION: The aqueous extract of C. citratus shows promising therapeutic properties. The findings advocate for further research into its compounds for potential isolation, purification, and in-depth pharmacological studies, especially in areas like nervous system disorders, diabetes, obesity, and combating oxidative stress.


Asunto(s)
Antiinfecciosos , Cymbopogon , Humanos , Antioxidantes/farmacología , Árabes , Lipasa , Fitoquímicos/farmacología , Antiinfecciosos/farmacología
12.
Sci Rep ; 14(1): 1919, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253703

RESUMEN

The use of traditional herbal remedies has been a common practice for centuries across different cultures to treat various ailments. In Palestine, traditional herbal medicines are widely used, but their efficacy and safety have not been thoroughly investigated. Therefore, the purpose of this study was to assess the biological activity and toxicity of two traditional herbal blends often used to treat obesity in the West Bank region of Palestine. Two herbal blends with a total of eight plants were chosen based on their historic use and availability. The plant aqueous extracts were evaluated for their antioxidant, anti-fibrotic, anti-obesity, anti-diabetic, and cytotoxic activities. The results showed that these blends have potent antifibrotic, antioxidant, and anticancer activities. While their activities on α-amylase and lipase enzymes (main targets) showed moderate activities. Therefore, our results showed that Herbal Blend 2 was more potent than Herbal Blend 1 on all investigated targets. Herbal Blend 2 showed significant activities as an antioxidant, antifibrotic, and anticancer activities with IC50 values of 68.16 ± 2.45, 33.97 ± 1.14, and 52.53 ± 0.78 µg/mL against DPPH, LX-2, and MCF-7 cell lines, respectively. While it is IC50 values on α-amylase and lipase enzymes were 243.73 ± 1.57 and 1358.39 ± 2.04 µg/mL, respectively. However, the use of anti-cancer plants can be challenging due to their cytotoxic effects on the body. We urge individuals to exercise caution when using natural remedies and to seek medical advice before incorporating them into their health regimens. This study provides valuable insight into the potential health benefits of traditional herbal remedies and emphasizes the importance of responsible usage.


Asunto(s)
Antioxidantes , Árabes , Humanos , Antioxidantes/farmacología , Lipasa , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , alfa-Amilasas
13.
J Ethnopharmacol ; 324: 117749, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Obesity has become a public burden worldwide due to its booming incidence and various complications, and browning of white adipose tissue (WAT) is recognized as a hopeful strategy to combat it. Blossom of Citrus aurantium L. var. amara Engl. (CAVA) is a popular folk medicine and dietary supplement used for relieving dyspepsia, which is recorded in the Chinese Materia Medica. Our previous study showed that blossom of CAVA had anti-obesity potential, while its role in browning of WAT was still unclear. AIM OF THE STUDY: This study aimed to characterize the constituents in flavonoids from blossom of CAVA (CAVAF) and to clarify the anti-obesity capacities especially the effects on browning of WAT. MATERIALS AND METHODS: Gradient ethanol eluents from blossom of CAVA were obtained by AB-8 macroporous resin. 3T3-L1 cells and pancreatic lipase inhibition assay were employed to investigate the potential anti-obesity effects in vitro. HPLC and UPLC/MS assays were performed to characterize the chemical profiles of different eluents. Network pharmacology and molecular docking assays were used to reveal potential anti-obesity targets. Furthermore, high-fat diet (HFD)-induced mice were constructed to explore the anti-obesity actions and mechanisms in vivo. RESULTS: 30% ethanol eluents with high flavonoid content and great inhibition on proliferation of 3T3-L1 preadipocytes and pancreatic lipase activity were regarded as CAVAF. 19 compounds were identified in CAVAF. Network pharmacology analysis demonstrated that AMPK and PPARα were potential targets for CAVAF in alleviating obesity. Animal studies demonstrated that CAVAF intervention significantly decreased the body weight, WAT weight, serum TG, TC and LDL-C levels in HFD-fed obese mice. HFD-induced insulin resistance and morphological changes in WAT and brown adipose tissue were also markedly attenuated by CAVAF treatment. CAVAF supplementation potently inhibited iWAT inflammation by regulating IL-6, IL-1ß, TNF-α and IL-10 mRNA expression in iWAT of mice. Furthermore, the gene expression levels of thermogenic markers including Cyto C, ATP synthesis, Cidea, Cox8b and especially UCP1 in iWAT of mice were significantly up-regulated by CAVAF administration. CAVAF intervention also markedly increased the expression levels of PRDM16, PGC-1α, SIRT1, AMPK-α1, PPARα and PPARγ mRNA in iWAT of mice. CONCLUSION: CAVAF treatment significantly promoted browning of WAT in HFD-fed mice. These results suggested that flavonoid extracts from blossom of CAVA were probably promising candidates for the treatment of obesity.


Asunto(s)
Citrus , Flavonoides , Ratones , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Simulación del Acoplamiento Molecular , PPAR alfa , Tejido Adiposo Blanco , Obesidad/metabolismo , Etanol/farmacología , Citrus/química , ARN Mensajero , Lipasa , Ratones Endogámicos C57BL
14.
Artículo en Inglés | MEDLINE | ID: mdl-38219632

RESUMEN

An integrated bioactive-chemical quality markers (Q-markers) discovery strategy, which was based on the LC-MS plant metabolomics, HPLC fingerprint as well as the chemical spectrum-efficacy relationships, was designed to develop a methodology for accurate and comprehensive evaluation of the quality of Acanthopanax sessiliflorus leaves (ASL). Firstly, a high resolution and sensitivity UHPLC-Q-Orbitrap MS method was used for plant metabolomics analysis to obtain component characterization and screen potential chemical markers that differentiate between different harvesting periods. A total of 53 chemical components were identified, and 8 potential chemical markers were discovered, such as sucrose, maltol and phenylalanine. Secondly, a selective HPLC fingerprint analysis of ASL and its pancreatic lipase activity assay method was successfully investigated in vitro. In the study of chemical spectrum-efficacy relationships, neochlorogenic acid, chlorogenic acid, caffeic acid and hyperoside were screened and showed the inhibited pancreatic lipase activity with IC50 values, 0.16 ± 0.01, 0.13 ± 0.01, 0.31 ± 0.01, and 0.44 ± 0.02 mg/mL, respectively, which indicated the above four constituents were selected as the bioactive-chemical Q-markers of ASL. Finally, an accurate and reliable quantitative HPLC assay was developed and validated for simultaneous determination of four bioactive-chemical Q-markers in ASL, and their content levels in ASL varied widely in different harvesting periods. The systematic and efficient screening strategy for bioactive-chemical Q-markers in this study, based on " LC-MS plant metabolomics, HPLC fingerprint, and spectrum-efficacy relationships," could have effectively improved the quality assessment level of ASL.


Asunto(s)
Medicamentos Herbarios Chinos , Eleutherococcus , Extractos Vegetales/química , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Hojas de la Planta/química , Lipasa , Metabolómica/métodos
15.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279214

RESUMEN

Alcohol is believed to harm acinar cells, pancreatic ductal epithelium, and pancreatic stellate cells. After giving ethanol and/or ß-carotene to C57BL/6 mice, our goal was to evaluate their biochemistry, histology, and morpho-quantitative features. There were six groups of C57BL/6 mice: 1. Group C (control), 2. Group LA (low-dose alcohol), 3. Group MA (moderate-dose alcohol), 4. Group B (ß-carotene), 5. Group LA + B (low-dose alcohol combined with ß-carotene), and 6. Group MA + B (moderate-dose alcohol combined with ß-carotene). After the animals were euthanized on day 28, each specimen's pancreatic tissue was taken. Lipase, uric acid, and amylase were assessed using biochemical assessment. Furthermore, the examination of the pancreatic structure was conducted using Ammann's fibrosis scoring system. Finally, the morpho-quantitative characteristics of the pancreatic islets and acinar cells were determined. In the serum of the MA + B group, there were higher amounts of total amylase (825.953 ± 193.412 U/L) and lower amounts of lipase (47.139 ± 6.099 U/L) (p < 0.05). Furthermore, Ammann's fibrosis punctuation in the pancreas revealed significant variations between the groups (p < 0.001). Finally, the stereological analysis of pancreatic islets showed that the groups were different (p < 0.001). These findings suggest that antioxidant treatments might help decrease the negative effects of ethanol exposure in animal models.


Asunto(s)
Páncreas , beta Caroteno , Ratones , Animales , beta Caroteno/farmacología , Ratones Endogámicos C57BL , Páncreas/patología , Etanol , Lipasa , Amilasas , Fibrosis , Suplementos Dietéticos
16.
Artículo en Inglés | MEDLINE | ID: mdl-38237655

RESUMEN

The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or 'A') and Asparagus racemosus (Shatavari or 'S') after their dietary inclusion in fish, Channa punctatus (13.5 ± 2 g; 11.5 ± 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.


Asunto(s)
Channa punctatus , Factores Reguladores Miogénicos , Withania , Animales , Withania/genética , Dieta/veterinaria , Peces , Amilasas , Lipasa , Alimentación Animal/análisis
17.
Int J Biol Macromol ; 257(Pt 2): 128641, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061520

RESUMEN

The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.


Asunto(s)
Adenocarcinoma , Ácidos Decanoicos , Humanos , Animales , Ratones , Polvos , Ácidos Decanoicos/metabolismo , Lipasa/metabolismo , Enzimas Inmovilizadas/metabolismo
18.
J Biotechnol ; 379: 78-86, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072327

RESUMEN

This study presents a solvent-free enzymatic approach for the synthesis of fatty acid methyl esters (FAMEs), such as methyl oleate, for their application as adjuvant in plant protection products (PPP) formulations. The direct esterification between free fatty acid and methanol was optimized to achieve 98% acid conversion. The kinetics of this conversion was accurately described by a simple second order mechanism and non-linear regression was applied to calculate the rate constants of the forward and backward reactions based on full progress curves data. The rate constant of the forward reaction (synthesis) was one order of magnitude higher than the backward reaction (hydrolysis) and favored formation of the target methyl ester product, rendering the removal of water unnecessary. Enzymatically synthesized methyl oleate was benchmarked against the chemically synthesized compound, showing matching results in terms of stability, spreadability and emulsifying capacity in plant care formulations. The enzymatic synthesis of FAMEs under solvent free conditions allows to achieve a safer and more sustainable character for carrier solvents in PPP formulations.


Asunto(s)
Ésteres , Lipasa , Lipasa/química , Esterificación , Hidrólisis , Ácidos Grasos , Solventes/química , Cinética , Enzimas Inmovilizadas/química
19.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37779216

RESUMEN

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Asunto(s)
Scutellaria baicalensis , Ultrafiltración , Humanos , alfa-Glucosidasas , Hipoglucemiantes/farmacología , Lipasa , alfa-Amilasas
20.
Curr Probl Cardiol ; 49(2): 102345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103823

RESUMEN

The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.


Asunto(s)
Lipasa , Yoga , Humanos , Lipasa/metabolismo , Dieta Saludable , Lipólisis/fisiología , Obesidad/terapia , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA